280. Find the spherical coordinates of A(2,3,-1) a) (3.74, 105.5⁰, 56.13⁰) b) (3.74, 105.5⁰, 56.31⁰) c) (3.74, 106.5⁰, 56.13⁰) d) (3.74, 106.5⁰, 56.31⁰)
280. Find the spherical coordinates of A(2,3,-1) a) (3.74, 105.5⁰, 56.13⁰) b) (3.74, 105.5⁰, 56.31⁰) c) (3.74, 106.5⁰, 56.13⁰) d) (3.74, 106.5⁰, 56.31⁰)
Share
Answer: b
Explanation: r = √(x2+y2+z2
) = √14 = 3.74
Θ = cos-1
(z/r) = cos-1
(-1/3.74) = 105.5⁰
Φ = tan-1
(y/x) = tan-1
(3/2) = 56.31⁰
Answer: b
Explanation: r = √(x2+y2+z2
) = √14 = 3.74
Θ = cos-1
(z/r) = cos-1
(-1/3.74) = 105.5⁰
Φ = tan-1
(y/x) = tan-1
(3/2) = 56.31⁰.
Answer: b
Explanation: r = √(x2+y2+z2
) = √14 = 3.74
Θ = cos-1
(z/r) = cos-1
(-1/3.74) = 105.5⁰
Φ = tan-1
(y/x) = tan-1
(3/2) = 56.31⁰
Answer: b
Explanation: r = √(x2+y2+z2
) = √14 = 3.74
Θ = cos-1
(z/r) = cos-1
(-1/3.74) = 105.5⁰
Φ = tan-1
(y/x) = tan-1
(3/2) = 56.31⁰.
Answer: b
Explanation: r = √(x2+y2+z2
) = √14 = 3.74
Θ = cos-1
(z/r) = cos-1
(-1/3.74) = 105.50
Φ = tan-1
(y/x) = tan-1
(3/2) = 56.310.