312. Find the curl of A = (y cos ax)i + (y + ex )k a) 2i – ex j – cos ax k b) i – ex j – cos ax k c) 2i – ex j + cos ax k d) i – ex j + cos ax k
312. Find the curl of A = (y cos ax)i + (y + ex )k a) 2i – ex j – cos ax k b) i – ex j – cos ax k c) 2i – ex j + cos ax k d) i – ex j + cos ax k
Share
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.
b) i – ex j – cos ax k
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k
b) i – ex j – cos ax k
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.
i – ex j – cos ax k
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.
b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.
Answer: b
Explanation: Curl A = i(Dy(y + ex)) – j (Dx(y + ex) – Dz(y cos ax)) + k(-Dy(y cos ax))
= 1.i – j(ex) – k cos ax = i – ex j – cos ax k.