329. Evaluate Gauss law for D = 5r2 /4 i in spherical coordinates with r = 4m and θ = π/2.
Ratna yadavEnlightened
Check your spam folder if password reset mail not showing in inbox????
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
c Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
c
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
C Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
C
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: 588.9 Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: 588.9
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: c Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: c
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: 588.9 Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
Answer: 588.9
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
c) Explanation: ∫∫ ( 5r2 /4) . (r2 sin θ dθ dφ), which is the integral to be evaluated. Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.
c)
See lessExplanation: ∫∫ ( 5r2
/4) . (r2 sin θ dθ dφ), which is the integral to be evaluated.
Put r = 4m and substitute θ = 0→ π/4 and φ = 0→ 2π, the integral evaluates to 588.9.