332. Find the value of divergence theorem for A = xy2 i + y3 j + y2z k for a cuboid given by 0<x<1, 0<y<1 and 0<z<1. a) 1 b) 4/3 c) 5/3 d) 2
332. Find the value of divergence theorem for A = xy2 i + y3 j + y2z k for a cuboid given by 0<x<1, 0<y<1 and 0<z<1. a) 1 b) 4/3 c) 5/3 d) 2
Share
Answer: c
Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
Answer: c
Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
Answer: c
Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
Answer: c
Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.