332. Find the value of divergence theorem for A = xy2 i + y3 j + y2z k for a cuboid given by 0<x<1, 0<y<1 and 0<z<1.
Ratna yadavEnlightened
Check your spam folder if password reset mail not showing in inbox????
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
c Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.
c
See lessExplanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
C Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.
C
See lessExplanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
Answer: c Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.
Answer: c
See lessExplanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
Answer: c Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.
Answer: c
See lessExplanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz
+ ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3)
+ 1 + (1/3) = 5/3.
c) Explanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.
c)
See lessExplanation: A cuboid has six faces. ∫∫A.ds = ∫∫Ax=0 dy dz + ∫∫Ax=1 dy dz + ∫∫Ay=0 dx dz + ∫∫Ay=1 dx dz + ∫∫Az=0 dy dx + ∫∫Az=1 dy dx. Substituting A and integrating we get (1/3) + 1 + (1/3) = 5/3.