336. The divergence theorem converts
Check your spam folder if password reset mail not showing in inbox????
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
b Explanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.
b
See lessExplanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it
converts surface (double) integral to volume(triple) integral.
B Explanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.
B
See lessExplanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.
Answer: b Explanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.
Answer: b
See lessExplanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it
converts surface (double) integral to volume(triple) integral.
b) Explanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.
b)
See lessExplanation: The divergence theorem is given by, ∫∫ D.ds = ∫∫∫ Div (D) dv. It is clear that it converts surface (double) integral to volume(triple) integral.