382. If a function is described by F = (3x + z, y2 − sin x2z, xz + yex5), then the divergence theorem value in the region 0<x<1, 0<y<3 and 0<z<2 will be a) 13 b) 26 c) 39 d) 51
382. If a function is described by F = (3x + z, y2 − sin x2z, xz + yex5), then the divergence theorem value in the region 0<x<1, 0<y<3 and 0<z<2 will be a) 13 b) 26 c) 39 d) 51
Share
Answer: c
Explanation: Div (F) = 3 + 2y + x. By divergence theorem, the triple integral of Div F in
the region is ∫∫∫ (3 + 2y + x) dx dy dz. On integrating from x = 0->1, y = 0->3 and z = 0-
>2, we get 39 units.
Answer: c
Explanation: Div (F) = 3 + 2y + x. By divergence theorem, the triple integral of Div F in
the region is ∫∫∫ (3 + 2y + x) dx dy dz. On integrating from x = 0->1, y = 0->3 and z = 0-
>2, we get 39 units.
Answer: c
Explanation: Div (F) = 3 + 2y + x. By divergence theorem, the triple integral of Div F in
the region is ∫∫∫ (3 + 2y + x) dx dy dz. On integrating from x = 0->1, y = 0->3 and z = 0-
>2, we get 39 units.
Answer: c
Explanation: Div (F) = 3 + 2y + x. By divergence theorem, the triple integral of Div F in
the region is ∫∫∫ (3 + 2y + x) dx dy dz. On integrating from x = 0->1, y = 0->3 and z = 0-
>2, we get 39 units.