Poll Results
No votes. Be the first one to vote.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
The reluctance factor plays a crucial role in the calculation of the intensity of a magnetic field within magnetic circuits. It is analogously similar to resistance in electrical circuits. However, it doesn’t directly have a “value” in the calculation of the intensity of the magnetic field like a constant; instead, it is a parameter that characterizes the opposition to magnetic flux in a magnetic circuit. The formula to calculate reluctance ((R_m)) is given by:
[R_m = frac{l}{mu A}]
where:
– (l) is the length of the path of the magnetic field in meters (m),
– (mu) is the permeability of the material (in henries per meter, or H/m), and
– (A) is the cross-sectional area of the path in square meters (m²).
The intensity of the magnetic field ((H)), in terms of reluctance, can be related through the magnetic circuit law analogous to Ohm’s law in electrical circuits, where the magnetomotive force (MMF, (F)) and the magnetic flux ((Phi)) are related by the reluctance:
[F = Phi R_m]
Since the magnetomotive force ((F)) is also related to the intensity of the magnetic field ((H)) and the length of the path ((l)) by the formula (F = Hl), you can see how the reluctance ((R_m))